

(2018) Course on "Optimization Integrated Design" Final projects using modeFRONTIER

Dr. Savely Khosid

Course "Optimization Integrated Design" (87542), Faculty of Aerospace Engineering, Technion, Israel Spring semester 2018 (first time)

- ✓ 41 students
- ✓ 25 final projects

Performed mainly with:

- ✓ ANSYS Workbench
- ✓ MATLAB
- ✓ modeFRONTIER

Course is initiated and given by Dr. Savely Khosid (RAFAEL)

Optimization of an Avionic Cell Cooling with a Fan

Problem

High air temperature in the avionic cell with electronic component

Purpose of optimization

To chose a best fan place and minimum flow rate for cooling

modeFRONTIER module (part)

Variables

- ✓ Oxidizer percentage
- ✓ Fraction composition
- ✓ Size distribution

Objective functions✓ Maximum temperature✓ Minimum viscosity✓ Maximum energy release

<u>Results</u>

✓ 50°C temperature rise

 \checkmark 2% improvement of energy content

Water Rocket Optimization

$$\begin{split} \ddot{x} &= \frac{1}{m} \Big(\rho_w A_{ex} u_{ex}^2 \cos \theta_0 - \frac{1}{2} \rho_{atm} A_{ref} C_D \dot{x} |\dot{x}| \Big) \\ \ddot{z} &= \frac{1}{m} \Big(\rho_w A_{ex} u_{ex}^2 \sin \theta_0 - \frac{1}{2} \rho_{atm} A_{ref} C_D \dot{z} |\dot{z}| - g \Big) \\ \dot{m} &= -\rho_w A_{ex} u_{ex} \\ \dot{V}_a &= A_{ex} u_{ex} \end{split}$$

Rocket trajectory for maximum range

Scramjet Inlet Optimization

		Exit Mach	Target Mach	Flow rate	Static pressure	Total Length	Total pressure	Total width	Sum
	Н	59%	9%	86%	18%	1%	5%	61%	239%
Sensitivity	L	0%	1%	0%	27%	68%	3%	0%	100%
Table	MD	4%	36%	2%	2%	1%	3%	4%	51%
	MU	29%	34%	0%	11%	0%	58%	2%	134%
	XD	6%	13%	4%	16%	7%	27%	15%	88%
	XU	2%	6%	8%	26%	23%	4%	17%	87%

Topological Optimization of a Support

24% reduction of the support mass (due to 7% of stress increase only)

B: Topology Optimization Topology Density Type: Topology Density Iteration Number: 22 03/07/18 15:49

> Remove (0.0 to 0.4) Marginal (0.4 to 0.6) Keep (0.6 to 1.0)

Heat Break Optimization

mF results

3D Wing Minimum Drag Optimization

Mesh

Area

Rams

Dra

Objectives

EXIT

AR

Calculatoria

Chord

Benchmark Super Critical Wing (BSCW) (from Aeroelastic Prediction Workshop)

> CFD-based design optimization: RSM formulation, Kriging & RBF

DOE

Exite

EXIT

Shape & Topology Optimization of a Bracket

Rocket Engine for Maximum Height (Goddard problem)

modeFRONTIER/MATLAB model

Pressure Vessel Optimization

	t_shell – עובי החלק הגלילי של המיכל
1	t_head – עובי החלק האליפטי של המיכל
	R_shell – רדיוס המיכל בחלקו הגלילי
	half_L – חצי אורך המיכל הפנימי
h	_head – גובה החלק האליפטי של המיכל

nitial design	Optimum design	Parameter
3	115.02 \$75.00	
a.so	A State	930.00 (mili)
Val		
WE BE		
10 A	MILITY	TARE
		- Carles
UAA.		
Comparison (1) (1) (1) (2) (2) (2)	THE PROPERTY AND A DECEMBER OF	

initial design	Optimum design	Parameter
675 [mm]	681.87 [mm]	R_shell
1020.5 [mm]	1026.5 [mm]	half_l
10 [mm]	6.5215 [mm]	t_Shell
12 [mm]	6 [mm]	t_head
358 [mm]	411.78 [mm]	h_head
212.86 [kg]	135.34 [kg]	Mass
1.973	1.543	Safety Factor

Topology & Shape Optimization of a Bike Frame

Wind Energy Converter Optimization

modeFRONTIER: MOGA-II, 10 random and 10 SOBOL parents, 5000 iterations

Oscillating wind energy converter uses the pulsed Coandă effect. It optimized to extract the maximum power from the wind.

Maximum net power for the given wind speed is achieved for a specific value of the damping (representing load that extracts the power from the system's oscillations)

$$J_0 \ddot{\theta} + C \dot{\theta} + K \theta - L_{CG} \cdot mg \sin(\theta) = M(t)$$

Bypass Optimization for a Turbo-Fan

Results (2000 designs)		<u>Objectives</u>	Turbo Fan s	ematic
Thrust: +3.5%	Minimum Pressure Loss	$Min\left\{\int \left(P_{0in}-P_{0out}\right)dA\right\}$	High-pressure High-pressure Fan compressor turbine	Bypass channel
Pressure Loss: -6.5%	Maximum Thrust	$Max \left\{ Thrust = \int \rho \cdot V_{out} \left(V_{out} \cdot \overline{n} \right) dA \right\}$	High-pressure shaft	
				\rightarrow

Velocity field Base case

Combustion Low-pressure Nozzle chamber turbine

Low-pressure shaft

Low-pressure compressor

Optimization of an Elliptical Helical Spring

- ✓ 42% reduction of mass
- \checkmark 24% reduction of solid height
- ✓ 30% reduction of stress gradient
- ✓ 7% increase of stroke

M. Gzal, M. Groper and O. Gendelman, "Analytical, experimental and finite element analysis of elliptical cross-section helical spring with small helix angle under static load", International Journal of Mechanical Sciences, 130, p. 476-486, 2017.

Optimization of a Support for Vibration Test

Design #	Freq [Hz]	Mass [kg]	
0	258	1.4	
466 (opt)	384	0.8	
Improvement	48%	43%	

System requirements

Natural frequency above 360Hz
Minimum mass (there is 0.5kg mass in the center)
Stress Safety Factor above 1.1 for all regimes

Schematic of the Support

Optimization of a Crane Hook

37% mass reduction (relative to a round cross-section)

Optimum configurations comparison

3 cross-sections – rectangular, round & trapezoidal

Requirements:

- ✓ Carrying up to 3000 [N]
- ✓ Material: Al 6061-T6
- ✓ Safety Factor > 1.1
- ✓ Minimum hook mass

U-bend Heated Channel Optimization

Dynamic Model of FSAE Racecar

Formula Student is the largest world-wide student engineering competition. About 600 student teams from around the world annually design, build, test and eventually race a smallscale formula style racing car. We are team members of Formula Technion racing team.

Formula Technion 2018 car on the formula student Germany competition track

Optimum velocity map

In order to reduce our car's design duration and to achieve the shortest lap time, we would suggest that the project would take up the skill and software of modeFRONTIER for the years to come.